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Abstract: Nearly 40 years of aerosol optical thickness (AOT) climate data record (CDR) derived
from NOAA operational satellite Advanced Very High Resolution Radiometer (AVHRR) observation
over the global oceans is used to study the AOT changes due to the COVID-19 lockdown over the
surrounding coastal oceanic areas of 18 megacities in the coast zone (MCCZ). The AOT difference
between the annual mean AOT values of 2020 with COVID-19 lockdown and 2019 without the
lockdown along with the 2020 AOT annual anomaly are used to effectively identify the AOT changes
that are a result of the lockdown. We found that for most of the 18 MCCZ, the COVID-19 lockdowns
implemented to contain the spread of the coronavirus resulted in a decrease between 1% and 30% in
AOT due to reduced anthropogenic emissions associated with the lockdowns. However, the AOT
long-term trend and other aerosol interannual variations due to favorable or unfavorable meteorolog-
ical conditions may mask AOT changes due to the lockdown effect in some MCCZ. Different seasonal
variations of aerosol amount in 2020 relative to 2019 due to other natural aerosol emission sources not
influenced by the lockdown, such as dust storms and natural biomass burning and smoke, may also
conceal a limited reduction in the annual mean AOT due to the lockdown in MCCZ with relatively
loose lockdown. This study indicates that the use of long-term satellite observation is helpful for
studying and monitoring the aerosol changes due to the emission reduction associated with the
COVID-19 lockdown in the surrounding coastal oceanic areas of MCCZ, which will benefit the future
development of the mitigation strategy for air pollution and emissions in megacities.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic, which affects the whole world,
began in 2020 and has continued into 2021, causing a global public health and human life
disaster that is unprecedented in this century [1,2]. Megacities, which are large and densely
populated, have been the most heavily stricken regions of the COVID-19 pandemic. To
effectively contain the spread of the coronavirus, confinement polices of varying stringency
and extent have been implemented in affected cities, regions, and countries. Unintention-
ally, pollution emissions associated with anthropogenic activities were reduced in these
cities during the lockdown periods [3–6]. As a result, air quality in urban and ambient
suburban areas of these cities was also altered unexpectedly to a different extent [7–14],
especially in the megacities, which are normally influenced by heavy anthropogenic pollu-
tion due to active human activities (e.g., construction, transportation, energy generation,
industrial production, and others) and pollution can be transported hundreds and even
thousands of miles away under favorable meteorological conditions [15–19]. Here, we
define a megacity as a large urban agglomeration with a population exceeding 10 million
inhabitants. The majority of these urban megacities are located in a coastal zone or a zone
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with a distinct coastal influence [20], and are called Mega Cities in the Coastal Zone (MCCZ)
hereafter. The reduction in pollution emission during the pandemic lockdown periods
of these MCCZ provides us with a unique opportunity to study in a natural condition
the impact of surface emissions on air quality during the lockdown period relative to the
“business-as-usual” pollution period. The results of this study will assist in finding mitiga-
tion strategies for air pollution emissions in MCCZ, because air pollution is one of the most
imminent environmental issues faced by MCCZ in recent decades [15,17,21,22], especially
in developing countries where limited resources are available to address pollution issues.

Air pollution originated from MCCZ may extend hundreds or even thousands of
kilometers to the downwind oceanic regions in the atmosphere [16,20,23–25]. One of the
most important ambient air pollutants is particulate matter (PM) or atmospheric aerosols—
tiny pieces of solid or liquid particles suspended in the air. Atmospheric aerosols in an
urban environment cause serious air quality and health issues. In addition, they are cooling
and warming agents for climate change because they scatter and absorb solar and earth
radiation [25,26] and serve as cloud condensation nuclei (CCN) [27,28]. Aerosol optical
thickness (AOT) has been used to estimate PM amount for urban air pollution [29,30]. This
is because a high or low AOT value corresponds to a high or low PM amount, assuming
most of the aerosols are near ground or in the planetary boundary layer (PBL) of an
urban environment. This assumption is valid in most of the time when local pollution
is dominant compared to advected pollution originated from outside of a big city [31].
Thus, long-term satellite observation of AOT over MCCZ and their surrounding areas may
provide information about the changes and trends of air pollution, including the impact of
COVID-19 lockdown on AOT changes.

In this paper, we analyze AOT and its changes around MCCZ observed in 2020 with
the pandemic lockdown relative to 2019 pre-lockdown as well as relative to the annual
climatology of the past four decades. The long-term AOT data record is derived from the
observation of Advanced Very High Resolution Radiometer (AVHRR) onboard the polar
operational satellites of National Ocean and Atmospheric Administration (NOAA).

2. Materials and Methods
2.1. Selected MCCZ and Data Used
2.1.1. MCCZ

Eighteen urban centers in the coastal zone with inhabitants exceeding 10 million were
selected as MCCZ in our current study. These MCCZ have been profoundly affected by
the COVID-19 pandemic in 2020, in part due to the lockdown measures implemented
either fully or partially to slow the transmission of coronavirus and reduce the rate of
infection. During the lockdown period, air quality of these MCCZ was altered to varying
degrees. Table 1 summarizes the period of major partial or full lockdowns in 2020 for
the 18 selected MCCZ along with their location (latitude/longitude) and population.
Aside from the relatively long major lockdown period, several short-term lockdowns were
enforced during 2020 in most of the 18 MCCZ to control the surge of the infection after the
relaxion of the major lockdown.

Figure 1 shows the population (based on data from Wikipedia; https://en.wikipedia.
org/wiki/Main_Page, accessed on 3 November 2021) along with the AOT annual mean
climatology and its long-term (1982–2019) linear changing trend derived from the NOAA
satellite AVHRR AOT climate data record (CDR) for the 18 MCCZ. AOT on 0.63-µm
wavelength is computed for a square window sized ±2◦ latitude and longitude around the
individual MCCZ with the city center in the middle. The selection of this studying domain
was based on the sensitivity analysis on the three sets of widow size (±1◦,±2◦, and±4◦) in
consideration of having sufficient observational AOT samples to compute monthly mean
AOT for all of 18 MCCZ as well as still retaining the influence of urban emission in the
domain average of monthly mean AOT values. Specifically, we set a threshold that the grid
points in the selected square domain around each MCCZ should at least have 10% over
ocean, which is 160 grid points for the 4◦ × 4◦ square domain since the spatial resolution
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of monthly AOT CDR product is 0.1◦ × 0.1◦. For the grid points over ocean in a square
domain, we set another threshold that at least 50% of them should have all of 12 monthly
AOT values for each year in order to be used for computing annual mean AOT utilized in
our analysis for the square domain. Thus, there are at least 80 grid points for the 4◦ × 4◦

square domain have monthly AOT values for each year, which are used to compute domain
averaged annual mean AOT for each MCCZ.

Table 1. The major period of partial or full lockdown in 2020 for eighteen selected MCCZ along with their location
(latitude/longitude) and population (million).

# MCCZ Latitude
(Degree)

Longitude
(Degree)

Population
(Million) *

Lockdown Period of
2020 (mm.dd–mm.dd) Note

1 Tokyo 35.5762 139.6503 34.4 02.20–05.14
[6] Torkmahalleh et al., AAQR,
https://doi.org/10.4209/aaqr.200567,
accessed on 2 August 2021

2 Shanghai 31.2304 121.4737 24.3 01.23–04.08 The same as #1

3 Sao Paulo −23.5505 −46.6333 21.6 03.17–Continued ** The same as #1

4 Mumbai 19.076 72.8777 20.6 03.24–05.31
[32] Kumari et al., AAQR, https:
//doi.org/10.4209/aaqr.2020.05.0262,
accessed on 29 September 2020

5 New York 40.7128 −74.006 20.3 03.16–4.24 The same as #1

6 Osaka-Kobe 34.6937 135.5023 19.3 02.20–05.14 The same as #1

7 Buenos Aires −34.6037 −58.3816 15.6 03.19–07.17
Wikipedia (https://en.wikipedia.org/
wiki/COVID-19_pandemic_in_Argentina,
accessed on 3 November 2021)

8 Istanbul 41.0082 28.9784 15.5 03.04–05.10 The same as #1

9 Karachi 24.8607 67.0011 14.9 03.24–04.15
[33] Sipra et al., AAQR, https:
//doi.org/10.4209/aaqr.2020.07.0459,
accessed on 13 October 2020

10 Kolkata 22.5726 88.3639 14.8 03.19–04.25 The same as #1

11 Lagos 6.5244 3.3792 14.4 03.30–05.04
[34] Lanre Ibrahim et al., Health Policy
Technol., doi: 10.1016/j.hlpt.2020.09.004,
accessed on 15 September 2020.

12 Los Angeles 34.0522 −118.2437 13.1 03.16–5.18

https://www.nbclosangeles.com/news/
coronavirus/california-coronavirus-
pandemic-timeline-key-events/2334100/,
accessed on 3 November 2021

13 Manila 14.5995 120.9842 12.9 03.14–Continued

Wikipedia (https:
//en.wikipedia.org/wiki/Enhanced_
community_quarantine_in_Luzon,
accessed on 3 November 2021)

14 Shenzhen 22.5431 114.0579 12.5 01.23–04.08 The same as #1

15 Tianjin 39.3434 117.3616 12.5 01.23–04.08 The same as #1

16 Rio de Janeiro −22.9068 −43.1729 12.3 03.17–Continued The same as #1

17 Jakarta 6.2088 106.8456 10.8 03.15–Early June The same as #1

18 Lima −12.0464 −77.0428 10.1 03.16–Continued The same as #1

* Population is from Wikipedia (https://en.wikipedia.org/wiki/Main_Page, accessed on 3 November 2021). ** “continued” means the city
continued partial or loosened closure measures after the major tight lockdown period.
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Figure 1. Eighteen selected megacities in the coastal zone (MCCZ) in our study and their population,
long-term mean AOT on 0.63-µm wavelength, and AOT linear long-term trend, respectively.

Among these megacities, there are five (Tokyo, Osaka-Kobe, New York, Los Angeles,
and Istanbul) in developed countries with relatively small AOT. AOT long-term trends
in New York and Istanbul are negative but are positive in the other three megacities. The
remaining thirteen MCCZ are in developing countries. There are five (Sao Paulo, Rio de
Janeiro, Buenos Aires, Lima, and Jakarta) in the Southern Hemisphere (SH) with relatively
small AOT. Positive AOT long-term changing trends are noted in Sao Paulo, Rio de Janeiro,
and Jakarta while small negative AOT trends are seen in Buenos Aires and Lima. The other
MCCZ are in the Northern Hemisphere (NH) and have relatively large aerosol loading,
especially the megacities in China and India (e.g., Shanghai, Tianjin, Mumbai, and Kolkata),
where positive AOT long-term changing trends are evident. Fifteen out of the 18 megacities
are in the coastal zone of tropical or subtropical regions and the other three (New York,
Tianjin, and Istanbul) are on the coasts of the NH temperate zone.

Figure 2 shows the global map of temporally (1982–2019) averaged AVHRR AOT
on 0.63-µm wavelength (called AOT climatology) as well as the locations of 18 MCCZ
(marked by red square boxes). The boxes with a size of ±2◦ longitude/latitude around the
MCCZ are used to compute the AOT values for the 18 MCCZ. The AOT values over the
coastal oceanic surface around these MCCZ are generally higher than those over downwind
remote ocean surface due to the offshore transport of aerosols that originated from urban
pollutions. Thus, the changes of AOT due to considerable emission enhancement as well
as reduction events in urban and suburban areas of these MCCZ may extend over the
coastal ocean around the MCCZ. Therefore, satellite-observed AOT can be used to monitor
the variation and changing tendency of aerosol amount around these MCCZ caused by
emission change, such as that due to the COVID-19 lockdowns.
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Figure 2. Temporally averaged (1982–2019) monthly mean AVHRR AOT on 0.63-µm wavelength
over the global oceans along with the locations of 18 MCCZ marked by the red square boxes.

2.1.2. Satellite Data

Version 3 of NOAA operational satellite AVHRR AOT CDR (http://doi.org/10.7289/
V5BZ642P, accessed on 3 November 2021) is used in this study. The AVHRR AOT CDR
is derived over global water (or ocean) surface at 0.63-µm wavelength channel using a
two-channel AVHRR aerosol retrieval algorithm [35] from the AVHRR clear-sky reflectance,
which is determined from the NOAA Pathfinder Atmospheres-Extended (PATMOS-x)
AVHRR all-sky reflectance and cloud probability CDR products [36]. Due to the limited
channels of AVHRR instrument, only aerosol retrieval over water can be obtained and
of that, only the AOT retrieved from 0.63-µm channel achieves a climate quality, because
the retrieval from the wider 0.86-µm channel is contaminated by water vapor absorption,
which is difficult to be accurately quantified, especially for AOT trend detection. The
retrieval algorithm has been validated by comparing it with the Aerosol Robotic Network
(AERONET) ground AOT measurement [35,37] and the Moderate Resolution Imaging Spec-
troradiometer (MODIS) satellite AOT observation [38]. In this study, the global monthly
AVHRR AOT (0.63-µm) CDR product from 1982 to 2020 in 0.1◦ × 0.1◦ equal angle grid is
used. Figure 3 shows the AOT linear trend from 1982 to 2019 and its significance over the
global ocean derived from the long-term AVHRR AOT CDR. A positive AOT trend with a
confidence level above 95% (or the significance value > 2 in Figure 3b) is observed over the
east coastal oceans of China, the Arabian Sea, the Bay of Bengal, the west coastal ocean of
South Africa, and the Mozambique Channel. At the same time, a distinct negative AOT
trend with a confidence level above 95% (or the significance value < −2 in Figure 3b) is
observed over the east coastal ocean of the United States, the west coastal ocean of Europe,
and the Mediterranean Sea.

http://doi.org/10.7289/V5BZ642P
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Figure 3. (a) Linear long-term trend (1/decade) of AOT on 0.63-µm wavelength over the global
oceans along with (b) the corresponding significance of the trend. The warm color indicates positive
trend while the cold color indicates negative trend. For the significance > |±2|, the detected trend is
above 95% confidence level.

2.1.3. Reanalysis Data

In our analysis, we also use the monthly reanalysis data of seven meteorological vari-
ables: planetary boundary layer height (PBLH); precipitable water in atmospheric column
(PW); relative humidity at 2-m (RH); surface temperature at 2-m (TMP); U, V components
of surface wind speed at 10-m and 850-mb; and pressure vertical velocity at 0.995 sigma
level (ω). These variables are used to examine the possible effect of meteorological condi-
tions on AOT. PBLH may limit the vertical dispersion and ventilation of surface pollution
emissions, PW may influence the washout of aerosol particles, RH and TMP are important
for the hygroscopic growth of aerosol particles, U, V, andω are important for horizontal
and vertical transport of aerosol particles. The monthly reanalysis data with a latitude and
longitude resolution of 0.5◦ × 0.5◦ is obtained from National Centers for Environmental
Prediction (NCEP) climate forecast system reanalysis (CFSR) [39] monthly mean product
(ftp://nomads.ncdc.noaa.gov/CFSR/HP_monthly_means/, accessed on 13 May 2020).
The selected meteorological variables from CFSR monthly mean products from 1982 to
2020 are further interpolated into the same spatial resolution (0.1◦ × 0.1◦) as the satellite
AOT CDR product used in this study.

2.2. Methods
2.2.1. Analyzing AOT Differences

Offshore airflows may travel hundreds to thousands of kilometers from the emission
source regions over land to downwind oceanic areas, where AOT changes are not neces-
sarily linearly correlated with the emission changes in the source regions. This is due to
the complex chemical and microphysical changes of aerosol particles during the transport,
along with the effect of meteorological conditions. Thus, two types of annual AOT differ-
ence are computed in this study for the 18 MCCZ to assess the impact of lockdowns on

ftp://nomads.ncdc.noaa.gov/CFSR/HP_monthly_means/
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the aerosol loading in their surrounding coastal oceanic areas. The first type is the annual
AOT difference between 2020 with the influence of COVID-19 lockdown and 2019 without
the lockdown influence (named as Type-1 AOT difference hereafter). The second type of
AOT difference (or Type-2 AOT difference) is the AOT annual anomaly for 2020 with the
influence of COVID-19 lockdown relative to the corresponding annual climatology of AOT
(without the influence of lockdown). Thirty-eight years (1982–2019) of annual mean AOT
were used to compute the AOT annual climatology for a square box of ±2◦ latitude and
longitude around each of the 18 MCCZ. For example, the AOT annual climatology for a
MCCZ is the arithmetical mean of 38 annual mean AOT values from 1982 to 2019 for the
defined box around the MCCZ. Consistent changing tendency obtained from these two
types of annual AOT differences for 2020 should be more useful in assessing the impact of
COVID-19 lockdowns than the result based solely on either one of them.

2.2.2. Linear Regression of Multiple Variables

Meteorological conditions may enhance or weaken the AOT changes due to the
COVID-19 lockdown. Therefore, it is worthwhile to examine the correlation of AOT with
the meteorological variables that have a potential influence on AOT for the 18 MCCZ.
Since we have a long-term AOT CDR, we performed a linear regression of multiple
meteorological variables with AOT (τ) for the defined box of selected MCCZ, as expressed
in Equation (1):

τ
j
i = aj

0 + aj
1xj

1,i + aj
2xj

2,i + · · ·+ aj
7xj

7,i (1)

where j (=1, 2, 3, . . . , 18) is one of the 18 MCCZ and i is the index of year, which changes
from 1 (1982) to 38 (2019). x1, x2, . . . , x7 are seven meteorological variables (PBLH, PW,
RH, TMP, U, V, andω) selected from the CFSR reanalysis. a0 is the constant term and a1, a2,
. . . , a7 are seven linear regression parameters (or slopes).

3. Results
3.1. Annual AOT Changes

Consistent changing tendency obtained from the analysis of Type-1 and Type-2 annual
AOT differences for 2020 should be more useful in assessing the impact of COVID-19
lockdowns than the result based solely on either one of them. Figure 4 shows the two
types of annual AOT differences in a relative percentage for the 18 MCCZ. The detrended
annual AOT anomaly for 2020 is also shown in Figure 4 (discussed in the next subsection).
Consistent negative values for the two types of annual AOT differences are observed for
13 MCCZ. Negative AOT changes are anticipated as the lockdown consequence because
anthropogenic pollution emissions are reduced due to reduced human activities during
the lockdown period. Unexpectedly, Los Angeles has consistent positive values for the
two types of annual AOT differences while four MCCZ (Osaka Kobe, Lagos, Tianjin, and
Lima) show positive for Type-1 AOT difference, but negative for Type-2 AOT difference.
These unexpected AOT changes in a few MCCZ during the pandemic year may be due
to other AOT variations, such as interannual variations (including long-term trends), that
may conceal the AOT change due to the lockdown, making it indiscernible in satellite
observations over the coastal oceans around the MCCZ. More analyses are performed to
explore the causes of the unexpected AOT changes in the pandemic year and the results
are given below.
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Figure 4. Annual AOT (or τ) difference (∆τ) in percentage (%) between 2020 with the COVID-19
lockdown and 2019 without the lockdown, 2020 annual AOT anomaly, and detrended 2020 annual
AOT anomaly.

3.2. Long-Term Trend Effect

Significant long-term AOT linear trends over some coastal oceans (Figure 3) may con-
ceal AOT changes caused by the COVID-19 lockdown. Figure 4 also shows the detrended
annual mean AOT anomaly of 2020 for the 18 MCCZ. Of the 13 MCCZ with consistent
negative values in the two types of annual AOT difference in 2020, 12 had annual AOT
anomalies stay negative, and the values are between −1% and −30% after the trend effect
is removed, suggesting that the trend effect is not the major cause for the AOT changes
in 2020 with COVID-19 lockdown for these 12 MCCZ. Istanbul is the only city among the
13 MCCZ that changes the negative 2020 annual AOT anomaly to positive after the trend
effect is removed. This suggests the distinct negative long-term trend over the coastal ocean
surrounding Istanbul (see Figure 3) is the major cause of its negative 2020 annual AOT
anomaly rather than the lockdown effect. However, the lockdown effect on Istanbul’s AOT
in 2020 is still noticeable (−8%) when it is compared to 2019′s AOT, since the difference of
the trend effect is not as distinctive as the lockdown effect between these two consecutive
years.

Lima is one of the four MCCZ (Osaka Kobe, Lagos, Tianjin, and Lima) with positive
Type-1 but negative Type-2 AOT difference in 2020 (see Figure 4). After the long-term trend
is removed, the 2020 annual AOT anomaly changes from negative (−2%) to positive (7%)
in Lima. This suggests that the evident negative AOT trend over Lima coastal ocean (see
Figure 3) is probably responsible for the negative 2020 annual AOT anomaly. After the
long-term trend effect is removed, unexpected consistent positive values for the two types
of annual AOT difference appear. Figure 5 shows the detrended seasonal AOT anomaly
for Lima. The major positive 2020 AOT anomaly comes from December–January-February
(DJF), when the coronavirus had not yet spreaded to South America. The seasonal AOT
anomaly becomes negative when the coronavirus lockdown was implemented in the later
three seasons (Table 1). The positive AOT anomaly in DJF overwhelms the combined
negative AOT anomaly of the other three seasons with the lockdown effect. Daily surface
PM2.5 measurement also indicates that DJF is the most polluted season in Lima and there
is an evident decrease in the amount of PM2.5 after the lockdown was implemented in
March 2020 [6].
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Figure 5. Detrended AOT anomaly for the four seasons December-January-February (DJF), March-
April-May (MAM), June-July-August (JJA), September-October-November (SON) of 2020 in Lima.
DJF is the season without lockdown since the coronavirus had not yet spread to Lima.

For Osaka Kobe, Lagos, and Tianjin, Type-2 AOT difference stays negative after the
long-term trend effect is removed, which suggests the trend effect may be not as important
as the lockdown effect. However, their Type-1 AOT differences are positive rather than
negative, as expected for the lockdown effect. This suggests other AOT interannual
variations aside from the long-term trend may play a more important role for the AOT
changes in 2020 relative to 2019. Los Angeles’ positive Type-2 AOT difference stays positive
after the long-term trend effect is removed, but its Type-1 AOT difference is also positive.
Other interannual variations aside from the long-term trend and lockdown effect may be
responsible for the consistent positive values of the two types of annual AOT difference in
Los Angeles. Thus, further analyses and discussions on other AOT interannual variations
are given below to provide more insight as to the causes of AOT changes in 2020 in addition
to the effects of COVID-19 lockdown and the AOT long-term trend.

4. Discussion

As we mentioned above, the meteorological conditions may enhance or weaken
the AOT changes due to the COVID-19 lockdown. Therefore, using Equation (1), we
examined the correlation of AOT with the meteorological variables that have a potential
influence on AOT for the 18 MCCZ. Table 2 lists the individual linear correlation coefficients
(Ci, i = 1, 2, . . . , 7) for the seven meteorological variables and the ensemble multiple
linear correlation coefficient (C), which are normalized to 100 and expressed in the unit
of percentage (%), obtained from the multiple variable linear regression of Equation (1)
for the 18 MCCZ. Even though the influence of individual seven meteorological variables
on AOT is generally below 50%, their multiple ensemble influence may be above 50%.
Meteorological conditions show the largest influence on AOT in Istanbul (C = 79.75%). This
suggests that the positive annual AOT anomaly in 2020 noted for Istanbul in Figure 4 after
the long-term trend effect is removed is probably due to the AOT change caused by the
interannual variation of meteorological conditions. The lowest influence of meteorological
conditions on AOT is in Los Angeles (C = 16.31%) but the consistent positive values of two
types of annual AOT difference noted for Los Angeles in Figure 4 are unexpected for the
lockdown effect, which will be discussed further below. The influence of meteorological
conditions on AOT is also very low in Manila (C = 21.25%), so the consistent negative
values of two types of AOT difference (~−26%) noted for Manila in Figure 4 should be
mainly due to reduced pollution emissions during the COVID-19 lockdown. Praveena
and Aris [40] indicated that the PM2.5 amount was reduced by about 25% on average after
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the lockdown was enforced in Manila (monitored by the air pollution index of Malaysia;
http://apims.doe.gov.my/public_v2/home.html, accssed on 3 November 2021).

Table 2. The correlation coefficients from the multiple variable linear regression of Equation (1) for the 18 MCCZ. The
correlation coefficients are normalized to 100 and expressed in the unit of percentage (%). The highest negative or positive
correlation coefficient among the seven individual correlation coefficients for the seven meteorological variables (PBLH, PW,
RH, TMP, U, V, andω) is highlighted in bold font for each MCCZ. The multiple linear correlation coefficient represents the
ensemble correlation of AOT with the seven meteorological variables.

No Megacity
Individual Linear Correlation Coefficients (%) Multiple Linear

Correlation
Coefficient (%)

C1
(PBLH) C2 (PW) C3 (RH) C4 (TMP) C5 (U) C6 (V) C7 (ω)

1 Tokyo −36.27 −12.27 −26.12 −39.17 −19.92 −3.84 −49.81 70.29

2 Shanghai 13.48 26.21 8.51 33.20 4.32 −3.77 13.55 51.49

3 Sao Paulo 0.07 10.27 18.11 22.50 25.63 24.19 13.56 61.57

4 Mumbai −0.64 38.90 34.66 34.05 −20.87 −8.89 −35.18 53.69

5 New York 25.46 −34.06 −43.90 −15.15 18.43 −0.02 43.18 60.71

6 Osaka
Kobe −36.58 −3.60 −28.77 −14.51 −20.10 −16.75 40.96 59.40

7 Buenos
Aires 7.01 −23.94 −16.24 −21.14 11.61 −22.12 20.80 33.85

8 Istanbul −21.61 −45.56 −35.35 −17.62 −2.43 −53.65 −35.79 79.75

9 Karachi −16.89 44.20 36.13 41.13 −25.48 −13.95 −13.83 60.67

10 Kolkata 12.61 27.73 28.05 15.78 4.10 −17.37 −4.25 60.72

11 Lagos 33.00 −1.47 −2.70 −24.35 −11.18 −9.71 −6.47 53.92

12 Los
Angeles −6.04 −7.96 −7.41 −5.53 −8.66 −2.33 −7.76 16.31

13 Manila 1.40 −11.65 −12.00 −5.43 5.32 −3.98 −2.28 21.25

14 Shenzhen −3.11 13.74 9.40 4.29 15.52 −4.07 −20.19 39.88

15 Tianjin 0.96 20.47 −36.14 17.21 −20.95 4.14 −26.40 64.88

16 Rio de
Janeiro 8.42 3.09 11.99 16.75 12.81 13.93 30.39 62.02

17 Jakarta 16.46 −15.11 −17.42 15.84 −32.56 −12.00 16.33 44.19

18 Lima 32.77 −15.75 −21.60 3.78 −26.77 −32.28 −45.41 58.14

In addition to Istanbul, Tianjin, Osaka-Kobe, and Lagos are the three MCCZ that show
the opposite sign for Type-1 AOT difference and the detrended Type-2 AOT difference
in 2020 (see Figure 4). However, their Type-1 AOT difference in 2020 is positive and the
detrended Type-2 AOT difference is negative, which is opposite to that of Istanbul. Type-1
AOT difference for 2020 in Tianjin is positive rather than negative as are the other two
MCCZ in China (Shanghai and Shenzhen). Dust storms are the major source of PM in
northern and northeastern China during winter and spring [41–43], which is when the
COVID-19 outbreak developed into an epidemic. The lockdown measures implemented
in China to contain the spread of the coronavirus mainly affect anthropogenic emissions
rather than natural mineral dust particles blowing up from the land surface. The dust
storm events in 2020 were probably more active in 2020 than in 2019, so the corresponding
increase of AOT mineral dust component surpasses the reduction of AOT anthropogenic
component due to the emission reduction related to the lockdown in the northeastern
megacity Tianjin. Because the influence of dust events is relatively weak in the southern
and southeastern coasts of China, the AOT difference between 2020 and 2019 observed

http://apims.doe.gov.my/public_v2/home.html
http://apims.doe.gov.my/public_v2/home.html
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in Shenzhen and Shanghai is mainly due to the lockdown effect. Figure 6 shows AOT
distribution over the east coastal oceans of China for 2020 and 2019 (Figure 6a,b) and their
difference as a relative percentage (Figure 6c,d) overlaid with wind vectors at 10-m altitude
and 850-mb pressure level, respectively. In 2019, the westerly and northwesterly winds
near the surface (10-m) and close to the top of the planetary boundary layer (850-mb)
over northern China blow more aerosols (including dust particles) that originated from
the continent offshore to the downwind Bohai Sea (see Figure 6c,d). Thus, annual mean
AOT over the Bohai Sea is higher in 2020 than in 2019, which results in the positive AOT
difference between 2020 and 2019 observed in Figure 4 for Tianjin. Because the strong
westerly winds can blow aerosols (including dust particles) that originated from the China
continent to Korea and Japan [42,44,45], the behavior of the two types of annual AOT
difference in Osaka-Kobe are similar to those of Tianjin.
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Figure 6. AOT distributions over the east coastal oceans of China for (a) 2019 and (b) 2020 along with
their difference in a relative percentage (%) in (c,d), which are overlaid with the wind vectors at 10-m
altitude and 850-mb pressure level, respectively. Tianjin (TJ), Shanghai (SH), and Shenzhen (SZ) are
marked in plot (a) with letters in blue.

In Lagos, biomass burning aerosol from Sahel and west-central Africa is a major
aerosol component in addition to the anthropogenic aerosol component, especially in
summer and fall, which are the peak burning seasons. Similar to Tianjin, natural biomass
burning events in Lagos were probably more active in 2020 than in 2019 since the air was
drier (∆RH < 0) and less precipitation was available (∆PW < 0) in 2020 compared to 2019
(Figure 7). Figure 8 also shows that the positive detrended Type-2 seasonal AOT difference
in 2020 comes from JJA and SON, which are the biomass burning seasons. Thus, the
corresponding increase of AOT biomass burning component may surpass the reduction of
AOT anthropogenic component due to the emission reduction related to the lockdown in
2020, which interprets the AOT annual difference between 2020 and 2019 as positive rather
than negative in Lagos.
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Figure 7. Distribution for the difference in percentage (%) of (a) column precipitable water (PW) and
(b) relative humidity (RH) at 2-m altitude between 2020 and 2019 in the surrounding areas of Lagos.
The city of Lagos is marked in plot (a) with letters LG in red color.
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Figure 8. Detrended seasonal AOT anomaly of 2020 in Lagos. JJA and SON are the biomass burning
seasons.

For Los Angeles, the two types of annual AOT difference are positive in 2020 and the
AOT annual anomaly remains positive after the AOT long-term trend effect is removed
(see Figure 4). This implies there may be other AOT interannual variation masking the
effect of loosely implemented lockdown measures in Los Angeles. Figure 9 compares
monthly AOTs and the detrended AOT anomaly between 2019 and 2020, respectively. It
suggests the positive two types of annual AOT difference of 2020 are mainly due to the
contribution of higher AOT values in the summer and fall of 2020. The air was generally
drier (∆RH < 0) and less precipitation was available (∆PW < 0) in 2020 compared to 2019
in the vicinity of Los Angeles over land area as well as over all of California (Figure 10).
According to news reports, more severe forest and bush fires occurred in the summer and
fall of 2020 in California. Figure 11 shows the map of Type-1 seasonal AOT difference as
a relative percentage over the coastal ocean of Los Angeles for fall 2020, overlaid with
seasonal wind vectors on 10-m altitude and 850-mb pressure level, respectively. The strong
winds blow from northwest to southeast along the coastal lines over both ocean and land,
which transports the enhanced AOT due to the fire smoke from the northern upwind
coastal ocean to the downwind coastal ocean around the city.
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Figure 9. (a) Monthly AOT plot of 2019, 2020, and the climatology along with (b) the plot of detrended monthly AOT
anomaly of 2019 and 2020 in Los Angeles.

Geographies 2021, 1, FOR PEER REVIEW 13 
 

 

 

Figure 9. (a) Monthly AOT plot of 2019, 2020, and the climatology along with (b) the plot of 

detrended monthly AOT anomaly of 2019 and 2020 in Los Angeles. 

 

Figure 10. Distribution for the difference (%) of (a) column precipitable water (PW) and (b) relative 

humidity (RH) at 2-m altitude between 2020 and 2019 in the surrounding areas of Los Angeles. The 

city of Los Angeles is marked in plot (a) with letters LA in red. 

 

Figure 11. Distributions of AOT difference (%) between 2020 and 2019 in bush and forest fire-burn-

ing season SON over the coastal ocean of California, which is overlaid with the wind vectors at (a) 

10-m altitude and (b) 850-mb pressure level, respectively. The city of Los Angeles is marked in plot 

with letters LA in blue. 

The above analyses on unexpected AOT changes for the special cases of Tianjin, 

Osaka-Kobe, Lagos, and Los Angeles indicate our previous assumption that most of the 

aerosols are near ground or in PBL of an urban environment is not valid anymore for these 

four MCCZ. Moreover, the changes of emission scenarios during the lockdown period are 

also much more complex, for example, pollution emissions from heavy-duty vehicles may 

be reduced but private cars’ emissions may be increased during the lockdown period as 

observed by Dantas et al. [9], especially in the MCCZ with only partial lockdown imple-

mented. As a result, AOT changes are much more complex for these special cases so that 

Figure 10. Distribution for the difference (%) of (a) column precipitable water (PW) and (b) relative
humidity (RH) at 2-m altitude between 2020 and 2019 in the surrounding areas of Los Angeles. The
city of Los Angeles is marked in plot (a) with letters LA in red.
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Figure 11. Distributions of AOT difference (%) between 2020 and 2019 in bush and forest fire-burning
season SON over the coastal ocean of California, which is overlaid with the wind vectors at (a) 10-m
altitude and (b) 850-mb pressure level, respectively. The city of Los Angeles is marked in plot with
letters LA in blue.

The above analyses on unexpected AOT changes for the special cases of Tianjin,
Osaka-Kobe, Lagos, and Los Angeles indicate our previous assumption that most of the
aerosols are near ground or in PBL of an urban environment is not valid anymore for
these four MCCZ. Moreover, the changes of emission scenarios during the lockdown
period are also much more complex, for example, pollution emissions from heavy-duty
vehicles may be reduced but private cars’ emissions may be increased during the lockdown
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period as observed by Dantas et al. [9], especially in the MCCZ with only partial lockdown
implemented. As a result, AOT changes are much more complex for these special cases so
that AOT changes are not linearly correlated with the emission changes in source regions or
do not even necessarily represent the local emission changes associated with the lockdown.
We also focused our analysis on the domain averaged AOT annual mean values and annual
mean anomaly instead of individual instantaneous or daily mean AOT values in order to
minimize the bias caused by potential data gaps due to the limitations of passive AVHRR
aerosol observation (such as aerosol retrieval is only available in clear sky condition). As
a result, our analysis based on the two types of annual AOT difference may miss some
detailed AOT changes due to the lockdown for these special cases. Therefore, further
investigation on more detailed characteristics of AOT changes and the mechanisms in
aerosol chemical and transport processes for these special cases during the COVID-19
lockdown are needed in a future study by combing observations in high spatial and
temporal resolution over both land source region and downwind coastal oceanic areas
with chemical and transport model simulations.

5. Conclusions

Nearly 40 years of AOT CDR derived from NOAA AVHRR operational satellites
observation over the global oceans is used to study the AOT changes due to the COVID-19
lockdown over the surrounding coastal oceanic areas of 18 megacities in the coast zone.
Both AOT difference between annual AOT values of 2020 with COVID-19 lockdown and
2019 without the lockdown and 2020 AOT annual anomaly are used to better-identify the
AOT changes due to the lockdown. Consistent changing tendencies of AOT in these two
types of AOT difference can help us effectively discern and confirm the AOT change due
to the lockdown from other factors.

For most of the 18 MCCZ studied, the COVID-19 lockdowns implemented to contain
the spread of coronavirus resulted in decreased AOT with a magnitude between −1% and
−30% due to the reduction of anthropogenic emissions associated with the lockdown. For
some MCCZs, such as Istanbul and Lima, the distinct negative AOT long-term trend may
replace the lockdown effect and become the dominant contributor to the negative annual
AOT anomaly. At the same time, for a few MCCZ, other interannual variations of aerosol
amount due to favorable or unfavorable meteorological conditions may also mask the AOT
changes due to the lockdown effect. For example, the interannual variation of the dust
aerosol component over northern and northeastern China and its long-range transport may
mask the AOT reduction due to the lockdown effect in 2020 relative to 2019 without the
lockdown effect. Different seasonal variations of aerosol amount in 2020 relative to 2019
due to other emission sources, such as biomass burning for Lagos, bush and forest fires and
smoke for Los Angeles, along with meteorological conditions may conceal the limited AOT
reduction in annual AOT value due to loosely implemented lockdown measures in 2020.

This study indicates that the long-term satellite observation is useful for studying and
monitoring the aerosol changes due to the emission reduction associated with COVID-19
lockdowns in MCCZ and their surrounding coastal areas, which will benefit the future
development of mitigation strategies for air pollution and emissions in megacities.
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Acronyms

AERONET Aerosol Robotic Network
AOT aerosol optical thickness
AVHRR Advanced Very High Resolution Radiometer
CCN cloud condensation nuclei
CDR(s) climate data record(s)
CFSR climate forecast system reanalysis
COVID-19 coronavirus disease 2019
DJF December-January-February
JJA June-July-August
NASA National Aeronautics and Space Administration
MAM March-April-May
MCCZ Mega Cities in the Coastal Zone
MODIS Moderate-resolution Imaging Spectroradiometer
NCEI National Centers for Environmental Information
NCEP National Centers for Environmental Prediction
NESDIS National Environmental Satellite, Data, and Information Service
NOAA National Oceanic and Atmospheric Administration
NH North Hemisphere
PATMOS-x Pathfinder Atmospheres-Extended
PBLH planetary boundary layer height
PBL planetary boundary layer
PW precipitable water in atmospheric column
RH relative humidity
SH South Hemisphere
SON September-October-November
TMP surface temperature
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